

ABCanon7 library, v2.03

Programming guide and function reference
Rev G, January, 4th 2021

Programming guide and function reference Rev G, January 4th 2021

Page 2/54

Revision history:

Rev A, April, 26th 2016

 First release

Rev B, July, 10th 2016

 Documented library version 1.01

Rev C, July, 24th 2016

 Documented library version 1.02

Rev D, December, 11th 2016

 Documented library version 2.00

Rev E, March, 16th 2017

 Documented library version 2.01

Rev F, February, 10th 2020

 Documented library version 2.02

Rev G, January, 4th 2021

 Documented library version 2.03

Programming guide and function reference Rev G, January 4th 2021

Page 3/54

Index

1 INTRODUCTION NOTES .. 5

2 THEORY OF OPERATION .. 6

2.1 STEP #1: RETRIEVING THE LIST OF CONNECTED CAMERAS ... 6
2.2 STEP #2: CONNECTING TO A CAMERA .. 7
2.3 STEP #3: SELECTING THE IMAGE DESTINATION .. 7
2.4 STEP #4: CHANGING THE IMAGE SETTINGS .. 8
2.5 STEP #5: IMAGE SHOOTING ... 9
2.6 MISCELLANEOUS FUNCTIONS ... 10
2.7 LIBRARY OPTIONS .. 10
2.8 NOTIFICATIONS/EVENTS ... 11

2.8.1 Event list .. 12
2.8.2 Event call back function.. 15
2.8.3 The event queue .. 16

2.9 RAW CANON NOTIFICATIONS ... 16
2.10 SAVING THE IMAGE .. 17
2.11 ERRORS ... 18
2.12 DEBUGGING AIDS... 19
2.13 TEXT HELPER FUNCTIONS .. 20
2.14 THREADING ... 20

3 ALPHABETICAL FUNCTION REFERENCE... 21

3.1 ABCANONBUILDCAMERALIST .. 21
3.2 ABCANONCHECKIMGSETTINGWRITABLE .. 21
3.3 ABCANONCONNECTTOCAMERA.. 22
3.4 ABCDEBUGDUMPHANDLE .. 23
3.5 ABCDEBUGMEMORYUSED ... 23
3.6 ABCDEBUGSETSTDOUT .. 24
3.7 ABCANONDISCONNECTFROMCAMERA .. 25
3.8 ABCANONGETALLSETTINGS ... 25
3.9 ABCANONGETBATTERYSTATUS.. 26
3.10 ABCANONGETBATTERYSTATUSTEXT ... 27
3.11 ABCANONGETCAMERACLOCK .. 27
3.12 ABCANONGETCAMERANAME ... 28
3.13 ABCANONGETCAMERATYPE .. 28
3.14 ABCANONGETCFSTATUS ... 29
3.15 ABCANONGETCUSTOMFUNCTION ... 29
3.16 ABCANONGETCUSTOMOPTION ... 30
3.17 ABCANONGETEVENT.. 30
3.18 ABCANONGETFWVERSION... 31
3.19 ABCANONGETIMGSETTING ... 32
3.20 ABCANONGETIMAGECOUNTER ... 32
3.21 ABCANONGETIMGSETTINGTEXT... 33
3.22 ABCANONGETLIST ... 34
3.23 ABCANONGETOPTIONS ... 35
3.24 ABCANONGETOWNERNAME ... 36
3.25 ABCANONGETPICTURETYPES ... 36
3.26 ABCANONGETPQIMAGECOUNT .. 37
3.27 ABCANONGETREMAININGSHOTS .. 37
3.28 ABCANONGETSERIALNUMBER ... 38

Programming guide and function reference Rev G, January 4th 2021

Page 4/54

3.29 ABCANONGETVERSION .. 38
3.30 ABCANONGETWRITABLESETTINGS ... 39
3.31 ABCANONIMGSETTINGVALUETOTEXT .. 40
3.32 ABCANONISSHOOTINGALLOWED .. 41
3.33 ABCANONREGISTERNOTIFICATIONCB .. 41
3.34 ABCANONREGISTERRAWNOTIFICATIONCB ... 42
3.35 ABCANONRELEASECAMERALIST .. 43
3.36 ABCANONRELEASEEVENT .. 43
3.37 ABCANONSETCAMERACLOCK .. 43
3.38 ABCANONSETDOWNLOADMODE... 44
3.39 ABCANONSETIMAGECOUNTER.. 45
3.40 ABCANONSETIMGSETTING ... 45
3.41 ABCANONSETOPTIONS ... 47
3.42 ABCANONSETSAVEFILENAMEA / ABCANONSETSAVEFILENAMEW ... 47
3.43 ABCANONSETSAVEOVERRIDEA / ABCANONSETSAVEOVERRIDEW ... 48
3.44 ABCANONSETSAVETARGET .. 49
3.45 ABCANONSHOOT .. 50

4 ERROR REFERENCE .. 51

4.1 ABC_RETVAL_OK ... 51
4.2 ABC_RETVAL_ERROR .. 51
4.3 ABC_RETVAL_BUSY .. 51
4.4 ABC_RETVAL_BUFFER_TOO_SMALL .. 51
4.5 ABC_RETVAL_INVALID_HANDLE ... 51
4.6 ABC_RETVAL_INVALID_PARM .. 51
4.7 ABC_RETVAL_OUT_OF_MEMORY ... 51
4.8 ABC_RETVAL_NOT_FOUND .. 51
4.9 ABC_RETVAL_SEM_ERROR .. 51
4.10 ABC_RETVAL_INVALID_PATH ... 52
4.11 ABC_RETVAL_TIMEOUT ... 52
4.12 ABC_RETVAL_DENIED .. 52
4.13 ABC_RETVAL_NOT_CONNECTED .. 52
4.14 ABC_RETVAL_THREAD_BUSY ... 52

5 LIBRARY REVISION HISTORY ... 53

5.1 V1.00 .. 53
5.2 V1.01 .. 53
5.3 V1.02 .. 53
5.4 V2.00 .. 53
5.5 V2.01 .. 53
5.6 V2.02 .. 53
5.7 V2.03 .. 54

Programming guide and function reference Rev G, January 4th 2021

Page 5/54

1 Introduction notes

I used the original Canon library (and in particular the Canon Utilities software) on my old Acer

Ferrari PC with Windows XP for nearly 10 years without any problem, and I was very happy about

that. But a couple of years ago I moved to a more modern Windows 7 PC and have also in the

meantime acquired a second 350D camera. This prompted me to find a way to use both camera on

the same PC at the same time. Not having found a suitable solution I decided to write my own, and

soon (well, not that soon), this library was born.

Since the kind of photography I normally do is (deep sky) astrophotography, this library has been

designed and tested with that kind of use in mind. While other use of this library are possible, these

weren't as tested as Manual mode.

This library also tries to avoid sending incorrect commands to the camera by limiting the allowed

operations to those that can be done using the original Canon Utilities software. The only exception

to this is the capability to set the shutter speed to BULB, because several third party software do

this without any problem.

As a general rule for this library, all int-returning functions return an error when the return value

is less than 0. Regular return values (not errors) are greater than or equal to zero, while char *-

returning functions return NULL when an error occurs, without any specific indication about which

error occurred.

There are a few exception to these rules, and they are indicated in the specific function description.

For a complete list of the errors that may be returned refer to ABCanon.h,

The ABUTestDll program is a very simple reference example about using this library. Please

refer to ABUTestDll.c for examples.

A different example (more complex but less complete) can be found in the (VB2010) .NET source

code for the ABUtilites program that mimics the original Canon Utilities software distributed

with the Canon 350D.

With version 2.03 the ABUtilites program has been replaced by ABUtilites2, (written in

VB.NET 2013), which adds some sort of "timer" to automate shooting (and it is also an example I

used to test async/await with the library).

Version 2.00 adds support for the Canon 5D.

Programming guide and function reference Rev G, January 4th 2021

Page 6/54

2 Theory of operation

This chapter introduce some basic concepts about using this library, but is not intended to be a

complete reference for the functions used. Some functions are not described at all, while other have

an incomplete parameter list description. For a complete reference of the available functions, refer

to Alphabetical function reference on page 21.

2.1 Step #1: Retrieving the list of connected cameras

To retrieve the list of connected cameras, call the ABCanonBuildCameraList (struct

sCameraData **ppCameraData) function.

This function compiles an array of the available cameras (using an internal memory buffer), returns

a pointer to this list in the ppCameraData parameter and the number of cameras found as the

return value.

When this list is no longer needed, call the ABCanonReleaseCameraList (struct

sCameraData *pCameraData) function to release the memory.

The returned array is an array of:

struct sCameraData

{

 uint32_t Idx;

 uint32_t Status;

 uint32_t SerialNumber;

 unsigned char CameraName[32];

 uint8_t FWRelease[3];

 uint8_t CameraType;

};

The fields of this structure are:

Idx The index. Starts from 0.

Status The status of this camera. You should normally see only ABC_STS_OK

indicating that the camera is available or ABC_STS_INUSE when the

camera has been already open (connected) by some other process. There are

other possible values but you should not normally see them (they only occurs

in case of errors). Refer to ABCanon.h for the complete list.

The following fields will be compiled only when Status == ABC_STS_OK.

SerialNumber The camera serial number.

CameraName The ASCIIZ camera name, as returned by the camera.

FWRelease[3] The camera firmware release, as FWRelease[0].FWRelase[1].FWRelease[2]

CameraType The camera type. In this release it can be ABCTYPE_350D or

ABCTYPE_5D.

Programming guide and function reference Rev G, January 4th 2021

Page 7/54

An example about how to use these function can be found in the "scan" command in

ABUTestDLL.c.

This first step is somehow optional, because the "Connect" function can be forced to connect a

specific camera (designated by its serial number, which should be known beforehand) or just the

first camera available.

2.2 Step #2: connecting to a camera

To connect to a camera, call the ABCanonConnectToCamera (int ConnectMethod,

int Filter, uint32_t Parm, ABCAMERA_HANDLE *phCH) function.

There are three ways to connect to a camera (with the ConnectMethod parameter):

 CONNECT_FIRST_AVAILABLE: just connect the first available camera. Cameras already

in use will not be counted, as cameras that don't satisfy the Filter parameter. Parameter

Parm is unused.

 CONNECT_BY_INDEX: connect the camera with the Idx parameter (in the camera list, see

step #1) equal to parameter Parm. Note that if the list changes between the call to

ABCanonBuildCameraList() and the call to ABCanonConnectToCamera() you

may end up connecting to the wrong camera. Note also that if the Idx camera does not

satisfy the Filter parameter the function will fail.

 CONNECT_BY_SERIAL_NUMBER: Connect to the camera with the serial number equal to

the Parm parameter and satisfying the Filter parameter. If no camera can be found, the

function will fail.

The Filter parameter can be ABCTYPE_ALL indicating that no filtering should be performed, or

an ABCTYPE_xxx value (either ABCTYPE_350D or ABCTYPE_5D in this release).

If the connection has been successful the return value will be ABC_RETVAL_OK and the camera

handle will be returned in phCH, otherwise the return value will be an error indicating why the

camera cannot be connected.

See the commands "open1", "openidx" and "opensn" in ABUTestDLL.c for examples.

2.3 Step #3: Selecting the image destination

When an image is taken (both using the shutter button or calling the ABCanonShoot() function)

the camera can save the image to the CF and/or to the PC. This can be chosen with the

ABCanonSetSaveTarget(ABCAMERA_HANDLE hCH, int SaveTarget) function. You

can use ABC_SAVETGT_PC to save to the PC only, ABC_SAVETGT_CF to save to the CF only or

(ABC_SAVETGT_PC + ABC_SAVETGT_CF) to save to both destinations at the same time. Note

that when the camera is first connected, the destination will be ABC_SAVETGT_CF and should be

changed if needed, while when the connection to the camera is closed (by calling

ABCanonDisconnectFromCamera()) the destination will be automatically reverted to

ABC_SAVETGT_CF.

Programming guide and function reference Rev G, January 4th 2021

Page 8/54

When the camera has the ABC_SAVETGT_PC target active, the image will be downloaded to the

PC via the USB connection.

This download can be handled in four different modes, selected with the
ABCanonSetDownloadMode(ABCAMERA_HANDLE hCH, int DownloadMode)

function:

 ABC_IMGDL_DISCARD: the image will be downloaded and discarded.

 ABC_IMGDL_SAVE_TO_FILE or ABC_IMGDL_OVERRIDE_OR_DISCARD: the image

will be automatically saved to a file. There are functions (see below) to set the

path/filename/image counter where the image should be saved.

 ABC_IMGDL_SAVE_TO_MEMORY: the image will be downloaded to memory.

The event that an image has been taken, discarded, downloaded to a file or to a memory buffer will

be notified via the notification call back or the event notification queue. See Notifications/events

below.

For more information about saving, refer to chapter 2.10 Saving the image.

See the command "autosavefn", "overridefn" and "downloadmode" in

ABUTestDLL.c for examples.

2.4 Step #4: Changing the image settings

This library can get the following image settings and can set some of them, depending on the mode

the camera is in:

ABC_IMGSETTING_MODE_DIAL Always read-only
ABC_IMGSETTING_SHUTTER_SPEED

ABC_IMGSETTING_APERTURE

ABC_IMGSETTING_ISO

ABC_IMGSETTING_EXP_COMPENSATION

ABC_IMGSETTING_METERING

ABC_IMGSETTING_AUTOFOCUS Always read-only

ABC_IMGSETTING_WHITE_BALANCE

ABC_IMGSETTING_PICTURE_QUALITY

ABC_IMGSETTING_FLASH_EXP_COMP

ABC_IMGSETTING_AUTO_POWER_OFF Always read-only

ABC_IMGSETTING_DRIVE_MODE Always read-only

ABC_IMGSETTING_AEB Always read-only

ABC_IMGSETTING_COLOR_TEMPERATURE 5D in K White Balance only

The current value for one setting can be retrieved using int ABCanonGetImgSetting

(ABCAMERA_HANDLE hCH, int ImgSetting) or all settings can be retrieved at once with
int ABCanonGetAllSettings (ABCAMERA_HANDLE hCH, int32_t

*pSettingsArray, int SettingsArraySize) where pSettingsArray is an user

allocated array of SettingsArraySize items (not bytes) to be filled.

You can check if any setting is writable by calling int

ABCanonCheckImgSettingWritable(ABCAMERA_HANDLE hCH, int

Programming guide and function reference Rev G, January 4th 2021

Page 9/54

ImgSetting) or check all of them with int

ABCanonGetWritableSettings(ABCAMERA_HANDLE hCH, int32_t

*pSettingsArray, int SettingsArraySize) used in the same way as

ABCanonGetAllSettings().

To change the value of writable settings, call int

ABCanonSetImgSetting(ABCAMERA_HANDLE hCH, int ImgSetting, int

SetType, int Value). Different types of change can be done:

 ABC_SETTYPE_FIRST: set to first (lowest) setting. Value is ignored.

 ABC_SETTYPE_CHANGE: relative change. Value is the (signed) change to be done. The

change is automatically limited to the maximum or minimum value.

 ABC_SETTYPE_SET: set the image setting to Value. If Value is not an allowed value

the function returns an error.

 ABC_SETTYPE_LAST: set to last (highest) setting. Value is ignored.

 ABC_SETTYPE_PREV: Previous setting. Similar to ABC_SETTYPE_CHANGE -1, but

wraps from the first element of the list to the last one when required. Value is ignored.

 ABC_SETTYPE_NEXT: Next setting. Similar to ABC_SETTYPE_CHANGE +1, but wraps

from the last element of the list to the first one when required. Value is ignored.

The list of allowed values for each (writable) setting can be retrieved with int

ABCanonGetList(ABCAMERA_HANDLE hCH, int ImgSetting, uint32_t

pList[], size_t ListSize). The return value is the number of values returned in the list,

or ABC_RETVAL_BUFFER_TOO_SMALL if ListSize is too small.

Since the size of the list is not necessary known, you can either allocate a bigger than necessary

buffer, pass it to the function and use the return value to limit the actual list size, or you can call this

function first with pList = NULL (ListSize will be ignored) to query for the actual list size

(returned value) and then call this function again with a correct sized list.

Note that if you call first ABCanonGetList() to query for the size of the list (with pList[] =

NULL) and then call ABCanonGetList() again with a buffer sized with the value returned by

the previous call, you should anyway check the returned value because the list size may have

changed in between the two calls (and so you can get fewer items if the list shrunk, or

ABC_RETVAL_BUFFER_TOO_SMALL if the list grew).

2.5 Step #5: Image shooting

To take a picture, call int ABCanonShoot(ABCAMERA_HANDLE hCH). Unfortunately, it is

not always possible to take a picture using an USB command. In these cases the

ABCanonShoot() function returns an error (ABC_RETVAL_DENIED). It is also possible call the
int ABCanonIsShootingAllowed(ABCAMERA_HANDLE hCH, int *Reason)

function to explicitly query for the reason why the shot is not allowed. Currently supported reasons

are:

 Mirror lock is enabled (ABC_SHOOTINGDENIED_MIRROR_LOCK)

 Self timer is active (ABC_SHOOTINGDENIED_SELF_TIMER)

Programming guide and function reference Rev G, January 4th 2021

Page 10/54

 Shutter speed/Mode dial is set to BULB (ABC_SHOOTINGDENIED_BULB)

There may be other conditions not currently known when shooting is not allowed. In these cases it's

likely that the ABCanonShoot() function will return a Canon untranslated error

(0x80??????).

2.6 Miscellaneous functions

Other miscellaneous functions that can be useful are (refer to the function reference chapter for a

complete description of the parameters and returned values):

 ABCanonGetVersion(): returns the library version and build number

 ABCanonGetSerialNumber(): returns the camera serial number (to be interpreted as

an unsigned 32 bit long number)

 ABCanonGetOwnerName(): returns the camera owner name.

 ABCanonGetPictureTypes(): returns a list of image types (Fine/Normal/Raw) with

their resolution and a text describing the image type itself.

 ABCanonGetPQImageCount(): returns the number of images to be downloaded for a

given picture quality (normally 1, but 2 if it's one of the RAW+JPG formats).

 ABCanonGetCameraClock() and ABCanonSetCameraClock() to get/set the

camera internal clock

 ABCanonGetBatteryStatus(): returns the battery level. Note that if the level

changes, an event is triggered too (so you can use the event call back routine or the event

queue instead of continuously calling this function).

 ABCanonGetRemainingShots(): returns the number of available shots on the CF.

Note that the camera limits the displayed number to 999, while the returned value may be

higher.

 ABCanonGetCFStatus(): returns the total size and the free space of the CF in kbytes.

If no CF is inserted, both values will be zero.

 ABCanonGetCameraName(): returns the Canon camera name ("Canon EOS 350D

DIGITAL" for example).

 ABCanonGetFWVersion(): returns the camera firmware version.

2.7 Library options

Some library behaviors can be changed based on the user needs using the

ABCanonSetOptions(ABCAMERA_HANDLE hCH, uint32_t NewOptions) and the

ABCanonGetOptions() function.

Available options are:

 ABC_OPTIONS_BULB_IN_LIST: (350D only, ignored otherwise). The list for the shutter

speed allowed values returned by the camera does never contain the BULB value

(ABC_SHUTTERSPEED3_BULB), even if the BULB setting CAN be selected both from

the camera and the PC (by calling ABCanonSetImgSetting(...,

ABC_SETTYPE_SET, ABC_SHUTTERSPEED3_BULB). If this option is set, the library

Programming guide and function reference Rev G, January 4th 2021

Page 11/54

will add the BULB value to the shutter speed list when appropriate and BULB can be

selected with any ABC_SETTYPE_xxx option. If this option is not set, the list returned will

be exactly the list returned by the camera (and BULB can then only be selected with

ABC_SETTYPE_SET).

 ABC_OPTIONS_HANDLE_THREAD_BUSY: With this option set, calling a library function

within a callback function will cause the function to fail with

ABC_RETVAL_THREAD_BUSY if the call may cause deadlocking. See Threading on page

20 for more information.

 ABC_OPTIONS_STANDARD_BULB: (5D only, ignored otherwise) When the Canon 5D

mode dial is set to BULB (ABC_DIALMODE_BULB), force the shutter speed to return

BULB (ABC_SHUTTERSPEED3_BULB) too. The camera will otherwise return

meaningless (random?) values. This can be useful to check when the camera is in BULB

mode in a camera independent way.

 ABC_OPTIONS_ALLOW_OVERWRITE: When saving the image to disk, it is normally an

error if the target file already exists. Setting this option allows the old file to be overwritten

without any error.

 ABC_OPTIONS_PERMANENT_OVERRIDE: The filename set with the

ABCanonSetSaveOverrideA/W() will normally be used only once. Setting this

option will keep the override filename active until the override itself is cleared. Not that

removing this option will NOT automatically clear the override filename.

 ABC_OPTIONS_BUSYPOLL: The library will generate an ABC_EVENT_BUSY (begin)

event every time the camera returns a ABC_RETVAL_BUSY error, then it will start polling

the camera and will finally generate a ABC_EVENT_BUSY (end) event when the camera is

no longer busy. Previous library versions required the user code to poll the camera to detect

this condition.

 ABC_OPTIONS_PCT2: Additional information are passed in the (otherwise NULL)

EventPtr pointer in the ABC_EVENT_DOWNLOADING event.

2.8 Notifications/events

The camera will notify an event when there is some change in the camera settings or in the camera

status, when a picture has been taken or when some other event occurs.

There are two ways to handle these events, either by registering a call-back function, or by letting

the library put all events in a queue and reading that queue. Both methods will be described below.

The first method (using a call back) will not automatically exclude the second one (the queue) but

gives you the flexibility to select which events will be inserted in the queue and which will be

discarded. Moreover, only events marked with "A" in the event list below will be normally put in

the queue.

The notified events will have this structure:

Programming guide and function reference Rev G, January 4th 2021

Page 12/54

struct sABCEvent

{

 uint32_t EventID;

 uint32_t EventSize;

 void *EventPtr;

};

The fields of this structure are:

EventID The event identification

EventSize A parameter related to the event size. For a more specific description, refer to the

event list below.

EventPtr Data associated to the event. For a more specific description, refer to the event list.

2.8.1 Event list

EventID Description Rv

ABC_EVENT_BATTERY_STATUS_CH

ANGED (1)

The battery status (level) has changed.

EventSize: New battery level

EventPtr: Unused.

NOTE: it occurred to me a couple of time during

testing that the camera generated an error while

shooting an image (like, for example, an ERR

05). In all these cases the camera locked up

reporting a LOW BATTERY event to the PC,

even if the battery was still fully charged.

A

ABC_EVENT_SETTINGS_CHANGED

(2)

Some image setting has changed. There is no

indication about what setting changed.

EventSize: Unused

EventPtr: Unused

A

ABC_EVENT_SHOT_COMPLETED

(3)

A shot has been completed. It happens at the

END of the shot. Just an informational event,

occurs only once regardless of the picture quality

setting, and after the ImgCounter variable has

been incremented (so you can change it if you

want). You can also call the

ABCanonSetSaveOverrideA/W() function

to set an explicit filename to be used for this

image only.

EventSize: The "session" image number

EventPtr: Unused

B

ABC_EVENT_JPG_READY (4) The JPG image is ready to be downloaded. This

event occurs only if the picture quality setting is

not RAW. If the return value from the call back

function is zero, the image will be discarded!

EventSize: The "session" image number

C

Programming guide and function reference Rev G, January 4th 2021

Page 13/54

EventID Description Rv

EventPtr: Unused

ABC_EVENT_CR2_READY (5) The RAW image is ready to be downloaded. This

event occurs only if the picture quality setting is

RAW or any RAW+JPG. If the return value

from the call back function is zero, the image will

be discarded!

EventSize: The "session" image number

EventPtr: Unused

C

ABC_EVENT_DOWNLOADING (6) Download progress percentage, 0% to 100%. In

case of RAW+JPG this event occurs twice (0 to

100 for the CR2 and then 0 to 100 again for the

JPG)

EventSize: 0 to 100

EventPtr: Unused.

When option ABC_OPTIONS_PCT2 has been

set, EventPtr will be a pointer to a struct

sDownloadPct variable (see note on page 15

below)

B

ABC_EVENT_JPG_SAVED (7) The JPG image has been saved, accordingly to

the save filename set with either

ABCanonSetSaveFilenameA/W() or

ABCanonSetSaveOverrideA/W(). This

event occurs only if the download mode has been

set to ABC_IMGDL_SAVE_TO_FILE or

ABC_IMGDL_OVERRIDE_OR_DISCARD.

EventSize: File size

EventPtr: File name (WSTR)

A

ABC_EVENT_CR2_SAVED (8) The CR2 image has been saved, accordingly to

the save filename set with either

ABCanonSetSaveFilenameA/W() or

ABCanonSetSaveOverrideA/W(). This

event occurs only if the download mode has been

set to ABC_IMGDL_SAVE_TO_FILE or

ABC_IMGDL_OVERRIDE_OR_DISCARD.

EventSize: File size

EventPtr: File name (WSTR)

A

ABC_EVENT_JPG_SAVE_FAILED

(9)

The JPG image was not saved because of some

error (the error itself is not reported). This event

occurs only if the download mode has been set to

ABC_IMGDL_SAVE_TO_FILE or

ABC_IMGDL_OVERRIDE_OR_DISCARD.

EventSize: Image size

A

Programming guide and function reference Rev G, January 4th 2021

Page 14/54

EventID Description Rv

EventPtr: Image data

ABC_EVENT_CR2_SAVE_FAILED

(10)

The CR2 image was not saved because of some

error (the error itself is not reported). This event

occurs only if the download mode has been set to

ABC_IMGDL_SAVE_TO_FILE or

ABC_IMGDL_OVERRIDE_OR_DISCARD.

EventSize: Image size

EventPtr: Image data

A

ABC_EVENT_JPG_IMAGE (11) The JPG image has been downloaded from the

camera and is now in memory. This event occurs

only if the download mode has been set to

ABC_IMGDL_SAVE_TO_MEMORY.

EventSize: Image size

EventPtr: Image data

A

ABC_EVENT_CR2_IMAGE (12) The CR2 image has been downloaded from the

camera and is now in memory. This event occurs

only if the download mode has been set to

ABC_IMGDL_SAVE_TO_MEMORY.

EventSize: Image size

EventPtr: Image data

A

ABC_EVENT_AF_FAILED (13) A shot has been requested but not executed

because an AF lock was not possible

EventSize: Unused

EventPtr: Unused

A

Programming guide and function reference Rev G, January 4th 2021

Page 15/54

EventID Description Rv

ABC_EVENT_CAMERA_DISCONNECT

ED (14)

The camera has been disconnected either by

disconnecting the USB cable or powering the

camera off

EventSize: Unused

EventPtr: Unused

A

ABC_EVENT_JPG_DISCARDED

(15)

The JPG image has been discarded by the library.

EventSize: Unused

EventPtr: Unused

A

ABC_EVENT_CR2_DISCARDED

(16)

The CR2 image has been discarded by the library.

EventSize: Unused

EventPtr: Unused

A

ABC_EVENT_BUSY (17) EventSize: 1 Busy, 0 No longer Busy

EventPtr: Unused.

Requires ABC_OPTIONS_BUSYPOLL.

A

ABC_EVENT_ALL_DONE (18) All shoot related operations have been completed.

Note that this event does not occur if no images

are saved by the camera (discarded images are ok,

saving to CF without any CF is not).

EventSize: Unused

EventPtr: Unused

A

EventPtr for the ABC_EVENT_DOWNLOADING event with the ABC_OPTIONS_PCT2 option

will be a pointer to the following structure:
struct sDownloadPct

{

 uint32_t TotalImages;

 uint32_t CurrentImage;

 uint32_t FullPct;

};

The fields of this structure are:

TotalImages Total images to download for this shot: 1 or 2 in case of RAW+JPG

CurrentImage 0/1. The current image

FullPct The 0-100% percentage of the full download. Does always 0-100% regardless

of the number of images to download.

2.8.2 Event call back function

This method is just a bit more complex than the event queue but it is more powerful because not all

events will be queued (the download percentage, for example).

Call int ABCanonRegisterNotificationCB() to register the notification call back.

Passing NULL as the call back function will disable any notification.

Programming guide and function reference Rev G, January 4th 2021

Page 16/54

The registered function will be called (from a background thread) every time there is a new event.

See Threading below for implications of using a different thread.

The call back function has the following prototype (ABC_NOTIFICATION_CB):

int _stdcall cbFunction (ABCAMERA_HANDLE Handle, struct sABCEvent

*pEvent)

pEvent is a pointer to the event structure defined above, containing the event ID and the event

data.

The meaning of the return value of this call back function depends on the "Rv" column of the event

list table above:

A Event can be discarded (and not inserted in the event queue) by returning 1

B The return value will be ignored and the event will never be inserted in the event queue

C The picture taken can be discarded by returning 0 (note that the image will be downloaded

anyway and then discarded). The event itself will never be inserted in the event queue.

So a generic rule if you decide to use just the call back function is to return 1 to all events. By doing

so the event queue will stay empty.

Any buffer/memory allocated by the library and passed as EventPtr to the call back function will

automatically be released upon returning.

2.8.3 The event queue

The second method to handle events is to read them from the event queue using the int

ABCanonGetEvent(ABCAMERA_HANDLE hCH, struct sABCEvent *pEvent,

uint32_t Timeout) function, which waits Timeout milliseconds for an event to occur then

returns ABC_RETVAL_OK if there is an event or ABC_RETVAL_TIMEOUT if the timeout lapsed

without any event (but other errors can occur too, for example in case of invalid parameters or

internal errors). Timeout can also be 0 (does not wait at all) or -1 (waits indefinitely).

If no call back function has been defined, all events will be queued except the ones marked "B" and

"C" in the table events above. If there is a call back function, queued events depends on the call

back function.

Any buffer/memory allocated by the library to hold the event itself and any possible event data

should be released by calling ABCanonReleaseEvent(struct sABCEvent *pEvent)

when the event data is no longer needed.

2.9 Raw CANON notifications

While the most important notifications can be handled via the call back function or the event queue

described above, there can also be some other events or event parameter that are currently ignored.

If you want, therefore, you can have a call back function (this too, from another thread) with exactly

the event notification as it came from the camera.

Programming guide and function reference Rev G, January 4th 2021

Page 17/54

Create a function with a prototype like void _stdcall MyRAWNotificationFunction

(ABCAMERA_HANDLE Handle, uint16_t EventID, uint16_t Severity,

uint8_t *pData, int DataSize) and register it by calling int

ABCanonRegisterRawNotificationCB(ABCAMERA_HANDLE hCH,

ABC_RAW_NOTIFICATION_CB lNotificationFunction)

2.10 Saving the image

Saving the image is not a simple task because you have to handle also the cases where the image

has been taken out of your control: you normally expect the image to be taken with the

ABCanonShoot() function or using some kind of remote shooting device, but you will get

images also when the user press the shutter button or when the remote shooting device has a

spurious activation like it may happen when using the serial port DTR, for example.

And these "spurious" images are a problem, because when the camera reports that there is an image

ready, the library has to download it, otherwise the camera will freeze with a "BUSY" indication on

the display.

The way the image is downloaded from the camera and saved is selected with

ABCanonSetDownloadMode(). There are 4 available modes:

 ABC_IMGDL_DISCARD: The image will be downloaded and then discarded. You can use

this option if you don't want/expect any image.

 ABC_IMGDL_SAVE_TO_MEMORY: The image will be downloaded to a memory buffer and

then passed to the application. You can then decide if save it to disk, process it, or discard it.

 ABC_IMGDL_SAVE_TO_FILE: In this mode the image will be automatically saved with a

schema like this:
<pathname\basename><ImageCounter>.<Extension>

The <Extension> part will be automatically set to the correct image type (JPG or CR2),

while <pathname\basename> and the number of digits in <ImageCounter> can be

set with the int ABCanonSetSaveFilenameA (ABCAMERA_HANDLE hCH,

char *FileName, int DigitsCount) function (or its

ABCanonSetSaveFilenameW() widechar counterpart).

When either one of these functions is called, the destination directory will be checked to see

if there are already images present, and the starting number for <ImageCounter> will be

automatically set to the correct value (last image number + 1).

A few other notes:

o If no filename is set, the image will be discarded

o The target directory will be read (to set to the correct <ImageCounter>) during

the call to ABCanonSetSaveFilenameA / ABCanonSetSaveFilenameW

function ONLY.

o The number will be incremented just after having saved an image and ONLY if

using the filename set with ABCanonSetSaveFilenameA /

ABCanonSetSaveFilenameW.

o You can get/change this number with ABCanonGetImageCounter() /

ABCanonSetImageCounter().

Programming guide and function reference Rev G, January 4th 2021

Page 18/54

o The save operation will never overwrite a file (but you can change this with the

ABC_OPTIONS_ALLOW_OVERWRITE option).

o If you set multiple cameras to the same directory and naming schema things are not

going to work.

o If you set both the normal filename (with ABCanonSetSaveFilenameA /

ABCanonSetSaveFilenameW) and an override filename (with

ABCanonSetSaveOverrideA / ABCanonSetSaveOverrideW) the

override filename will be used (and the number for the standard filename will not be

incremented).

o The override filename will be used only once (but you can change this with the

ABC_OPTIONS_PERMANENT_OVERRIDE option).

 ABC_IMGDL_OVERRIDE_OR_DISCARD: In this mode the image will be saved only if an

override filename has been set (with ABCanonSetSaveOverrideA /

ABCanonSetSaveOverrideW) or discarded otherwise.

o The normal filename set with ABCanonSetSaveFilenameA /

ABCanonSetSaveFilenameW will not be used in this mode.

o The override filename will be used only once (but you can change this with the

ABC_OPTIONS_PERMANENT_OVERRIDE option).

o The save operation will never overwrite a file (but you can change this with the

ABC_OPTIONS_ALLOW_OVERWRITE option).

o You can clear the override filename by passing NULL as the filename to the

ABCanonSetSaveOverrideA / ABCanonSetSaveOverrideW function.

So, to summarize:

 If you want to use a simple naming schema with a fixed part and a number (just like the

camera does on the CF), use ABC_IMGDL_SAVE_TO_FILE and set the filename with

ABCanonSetSaveFilenameA / ABCanonSetSaveFilenameW.

 If you want to use a totally different naming schema, and you want to save all the images

(also the ones that you don't expect), you can either use ABC_IMGDL_SAVE_TO_MEMORY

and handle the saving by yourself or you can set an override filename during the

ABC_EVENT_SHOT_COMPLETED event callback and let the library handle the saving.

 If you don't want to save the images you don't expect, use

ABC_IMGDL_OVERRIDE_OR_DISCARD and set an override filename just before taking

the picture.

2.11 Errors

You should not encounter errors in the normal operations of the library, except for the

ABC_RETVAL_TIMEOUT value for the ABCanonGetEvent() function and a few other specific

errors.

One error that is not really an error and that should be specifically handled is

ABC_RETVAL_BUSY. This error is returned by some functions, specifically those that set or get

settings to or from the camera, when the function has to talk to the camera because buffered data are

Programming guide and function reference Rev G, January 4th 2021

Page 19/54

no longer up to date and the function itself is called while the menu is displayed on the camera

screen. In this case there is no possibility to communicate with the camera, so a good thing to do is

to notify this condition to the user (so he/she can exit the camera menu) and to start polling the

camera (asking for any image setting, for example) to discover when the menu has been exited

(unfortunately there is no specific notification for the menu enter/exit, and you cannot count on the

ABC_EVENT_SETTINGS_CHANGED event occurring on menu exit because it happens only when

an image setting has been changed while in the menu).

For a complete list of possible errors and cause, se the Error reference chapter below.

2.12 Debugging aids

The library has a "stdout-like" output that can be useful to debug issues that may happen during

development. The ABUTestDll program uses this interface to output debugging messages to the

console.

To get this output, just create a function with this prototype: void _stdcall myDebugCb

(ABCAMERA_HANDLE Handle, void *Msg, uint32_t MsgSize) and pass it to int

ABCDebugSetStdout(int Flags, ABC_DEBUG_STDOUT_CB StdOutFn).

Flags is a parameter which controls how the debug text is passed to the function:

 ABC_STDOUT_LF_ONLY: line breaks are LFs (0x0A) only

 ABC_STDOUT_CR_LF: line breaks are CRs (0x0D) followed by LFs (0x0A)

 ABC_STDOUT_ANSI: text is 8-bit ASCII

 ABC_STDOUT_WIDE: text is widechar.

The parameters passed to the call back functions are:

 Handle: Camera handle this text refers to. Note that this handle CAN be NULL when the

text does not refer to a camera

 Msg: the ANSI or WIDECHAR text (depending on setup) to be displayed. Both types are 0-

terminated.

 MsgSize: The size (in characters) of Msg, not counting the ending '\0'.

Note that internally the debugging text is always 7-bit ASCII, except for the filenames which are

converted to ANSI from the internal WIDECHAR values.

This means that:

1. You can ignore codepages and the output should be always readable

2. Filenames MAY be displayed incorrectly, but will be correctly used.

This debugging feature is also not meant to be used in a release build of the final software, because

it may have problem if used from different processes.

Another couple of debugging functions are:

 ABCDebugMemoryUsed(0): returns the memory (in bytes) used by the library. It should

start at about 7K and not significantly increase in "idle" conditions (i.e. with an empty queue

and no buffered images).

 ABCDebugDumpHandle():Dumps the content of a camera handle to stdout.

Programming guide and function reference Rev G, January 4th 2021

Page 20/54

2.13 Text Helper functions

The library has also a few functions to help translating camera setting values to a readable text.

These function are quite basic and not sophisticated at all.

 ABCanonGetImgSettingText(): Similar to ABCanonGetImgSetting() but

returns a text instead of a value

 ABCanonImgSettingValueToText(): "static" function (does not refer to a camera

handle) to translate a setting value to its corresponding text

 ABCanonGetBatteryStatusText(): Return the text describing the current battery

level (in English) but can also be used to translate a generic battery value to the

corresponding text.

2.14 Threading

All functions are thread safe, since there is an internal mutex protecting the low level

communication with the camera.

There are anyway a couple of issues to know.

1. Call backs are done on different threads created by the library, and this means that .NET

events raised from this call backs requires an Invoke() call to handle the event in the UI

thread. You can use the code in ABUtilites as an example on how to do so. Handling the

call backs in a different language may require different precautions.

2. When the call back function is called, the internal mutex is normally not owned, so there are

no problems in handling the call back. This is valid both for the standard notification call

back (ABC_NOTIFICATION_CB) and for the raw notification call back

(ABC_RAW_NOTIFICATION_CB).

There is only one exception to this and it is when the event ID is

ABC_EVENT_DOWNLOADING: during this call back the internal mutex is owned by the

thread which is downloading the image (and calling the call back function). This requires

special attentions because deadlocking may otherwise occur (a typical scenario could be

this: you receive the ABC_EVENT_DOWNLOADING event, and therefore Invoke() to the

UI thread to update a download progressbar but the UI thread, for some timer tick or for

user input calls any ABCanon...() function that requires the mutex).

Version 2.03 of the library uses an helper thread to deliver some of the notifications,

avoiding deadlocks altogether. "Partial" deadlocks may still occur, but since these will not

block the downloading thread, the download will complete anyway, though some

ABC_EVENT_DOWNLOADING notifications may be lost.

You may try to avoid this situation by activating the

ABC_OPTIONS_HANDLE_THREAD_BUSY option. With this option active, you will get

the ABC_RETVAL_THREAD_BUSY return value from any function that may deadlock.

Note that in complex multithread scenarios you may also have false positives (function that

return this error when deadlocking is NOT going to occur) and it's for this reason that this

option is not active by default.

Programming guide and function reference Rev G, January 4th 2021

Page 21/54

3 Alphabetical function reference

3.1 ABCanonBuildCameraList

Build and returns the list of supported cameras connected to the system

Syntax:

int ABCAPI ABCanonBuildCameraList(

struct sCameraData **ppCameraData

);

Parameters:

ppCameraData

A pointer to a struct sCameraData that receives the list of supported cameras connected to

the system.

Return value:

The number of supported cameras found or an error

Remarks:

The memory allocated by the library and returned in the ppCameraData pointer should be

released by calling ABCanonReleaseCameraList()

3.2 ABCanonCheckImgSettingWritable

Check if an image setting is writable or read only in the current camera mode.

Syntax:

int ABCAPI ABCanonCheckImgSettingWritable(

ABCAMERA_HANDLE hCH,

int ImgSetting

);

Parameters:

hCH

The camera handle
ImgSetting

The image setting to retrieve, one of:
ABC_IMGSETTING_MODE_DIAL

ABC_IMGSETTING_SHUTTER_SPEED

ABC_IMGSETTING_APERTURE

Programming guide and function reference Rev G, January 4th 2021

Page 22/54

ABC_IMGSETTING_ISO

ABC_IMGSETTING_EXP_COMPENSATION

ABC_IMGSETTING_METERING

ABC_IMGSETTING_AUTOFOCUS

ABC_IMGSETTING_WHITE_BALANCE

ABC_IMGSETTING_PICTURE_QUALITY

ABC_IMGSETTING_FLASH_EXP_COMP

ABC_IMGSETTING_AUTO_POWER_OFF

ABC_IMGSETTING_DRIVE_MODE

ABC_IMGSETTING_AEB

ABC_IMGSETTING_COLOR_TEMPERATURE

Return value:

Not error return values are ABC_RETVAL_OK if the setting is writable, or

ABC_RETVAL_INVALID_PARM if it is not. Other errors can be returned too.

3.3 ABCanonConnectToCamera

Connect to a camera and returns an handle that can be used to operate the camera

Syntax:

int ABCAPI ABCanonConnectToCamera(

int ConnectMethod,

int Filter,

uint32_t Parm,

ABCAMERA_HANDLE *phCH

);

Parameters:

ConnectMethod

How to select the camera to connect to. Available methods are:

 CONNECT_FIRST_AVAILABLE: connect the first camera available (cameras

already in use are not counted).

 CONNECT_BY_INDEX: connect to the nth camera available.

 CONNECT_BY_SERIAL_NUMBER: connect to the camera with a specific serial

number.
Filter

Filter only the cameras of a certain type. Currently available values are

ABCTYPE_350D, ABCTYPE_5D and ABCTYPE_ALL (no filtering).

Programming guide and function reference Rev G, January 4th 2021

Page 23/54

Parm

An auxiliary parameter for the connection. Unused when ConnectionMethod is

CONNECT_FIRST_AVAILABLE, it is the camera index for CONNECT_BY_INDEX and

the camera serial number for CONNECT_BY_SERIAL_NUMBER.

phCH

A pointer to a ABCAMERA_HANDLE variable that receives the handle to the camera.

Return value:

The error code. When the return value is not ABC_RETVAL_OK the camera has NOT been opened.

Remarks:

Use ABCanonDisconnectFromCamera() to disconnect from the camera and release the

handle.

3.4 ABCDebugDumpHandle

Dumps the content of a camera handle to stdout

Syntax:

void ABCAPI ABCDebugDumpHandle(

ABCAMERA_HANDLE hCH

);

Parameters:

hCH

The camera handle

Return value:

The error code.

Remarks:

Output is done to stdout, so you have to have set a stdout call back function with

ABCDebugSetStdout() to see it.

3.5 ABCDebugMemoryUsed

Returns the memory used by the library

Programming guide and function reference Rev G, January 4th 2021

Page 24/54

Syntax:

int ABCAPI ABCDebugMemoryUsed(

int Reserved

);

Parameters:

Reserved

Reserved parameter. Set to 0.

Return value:

The memory used in bytes, or the error code.

Remarks:

See Debugging aids on page 19 for more information.

3.6 ABCDebugSetStdout

Sets the call back function for the library stdout text.

Syntax:

int ABCAPI ABCDebugSetStdout(

int Flags,

ABC_DEBUG_STDOUT_CB StdOutFn

);

Parameters:

Flags

StdOut options:

 ABC_STDOUT_LF_ONLY: Line breaks are LFs (0x0A) only

 ABC_STDOUT_CR_LF: Line breaks are CRs (0x0D) + LFs (0x0A)

 ABC_STDOUT_ANSI: Text is 8-bit ASCII

 ABC_STDOUT_WIDE: Text is widechar.
StdOutFn

The call back function (ABC_DEBUG_STDOUT_CB)

Return value:

The error code.

Remarks:

The call back function has the following prototype:

Programming guide and function reference Rev G, January 4th 2021

Page 25/54

void _stdcall StdOutFunction(

ABCAMERA_HANDLE Handle,

void *Msg,

uint32_t MsgSize

);

See Debugging aids on page 19 for more information.

3.7 ABCanonDisconnectFromCamera

Disconnects from a camera.

Syntax:

int ABCAPI ABCanonDisconnectFromCamera(

ABCAMERA_HANDLE hCH

);

Parameters:

hCH

The camera handle

Return value:

The error code.

Remarks:

The disconnect operation release all the resources allocated by the library but also reprogram the

camera to save the image to the CF and not to the PC. The Canon library did this too, but I have no

idea on what happens if you just pull the USB connection.

3.8 ABCanonGetAllSettings

Get all camera settings at one time

Syntax:

int ABCAPI ABCanonGetAllSettings(

ABCAMERA_HANDLE hCH,

int32_t *pSettingsArray,

int SettingsArraySize

);

Programming guide and function reference Rev G, January 4th 2021

Page 26/54

Parameters:

hCH

The camera handle
pSettingsArray

A pointer to user allocated memory to receive the settings
SettingsArraySize

The pSettingsArray size in items (not bytes)

Return value:

The number of items actually used (which is SettingsArraySize at maximum) or an error

code.

Remarks:

You can use ABC_IMGSETTING_... (see ABCanonGetImgSetting() below) as an index

in pSettingsArray. If SettingsArraySize is smaller than required only

SettingsArraySize items will be compiled.

3.9 ABCanonGetBatteryStatus

Returns the current battery status.

Syntax:

int ABCAPI ABCanonGetBatteryStatus(

ABCAMERA_HANDLE hCH

);

Parameters:

hCH

The camera handle

Return value:

The battery level that can be either ABC_BATTERY_NORMAL, ABC_BATTERY_WEAK,

ABC_BATTERY_LOW or ABC_BATTERY_LB.

Remarks:

Changes in the battery level are also notified and put in the event queue.

Programming guide and function reference Rev G, January 4th 2021

Page 27/54

3.10 ABCanonGetBatteryStatusText

Return the current battery level in a readable text format, or converts a generic battery status code to

a readable text format.

Syntax:

char * ABCAPI ABCanonGetBatteryStatusText(

ABCAMERA_HANDLE hCH,

int BattLevel

);

Parameters:

hCH

The camera handle. Can be NULL if the function is called to convert a generic battery

status code to text. In this case, BattLevel cannot be -1.

BattLevel

Use -1 to return the text for the current camera level, or the battery status code to be

converted.

Return value:

A pointer to a constant ASCII text with the readable version for the battery status or NULL in case

of error.

Remarks:

It is an error to have both hCH == NULL and BattLevel == -1.

3.11 ABCanonGetCameraClock

Returns the camera internal clock.

Syntax:

int ABCAPI ABCanonGetCameraClock(

ABCAMERA_HANDLE hCH,

time_t *pTime

);

Parameters:

hCH

The camera handle
pTime

A pointer to receive the current camera clock.

Programming guide and function reference Rev G, January 4th 2021

Page 28/54

Return value:

The error code.

Remarks:

The clock is in "unix" time (for example, 0x562823AC is Oct 21st 2015, 23:45:48)

3.12 ABCanonGetCameraName

Gets the Canon camera name ("Canon EOS 350D DIGITAL" for example)

Syntax:

char * ABCAPI ABCanonGetCameraName(

ABCAMERA_HANDLE hCH

);

Parameters:

hCH

The camera handle

Return value:

A pointer to an internal buffer containing the camera name as an ASCIIz string, or NULL in case of

error (invalid handle).

3.13 ABCanonGetCameraType

Gets the camera type

Syntax:

int ABCAPI ABCanonGetCameraType(

ABCAMERA_HANDLE hCH

);

Parameters:

hCH

The camera handle

Return value:

The camera type (see the ABCTYPE_xxxx values) or an error.

Programming guide and function reference Rev G, January 4th 2021

Page 29/54

3.14 ABCanonGetCFStatus

Gets the size and the available space on the compact flash.

Syntax:

int ABCAPI ABCanonGetCFStatus(

ABCAMERA_HANDLE hCH,

uint32_t *TotalKB,

uint32_t *FreeKB

);

Parameters:

hCH

The camera handle
TotalKB

A pointer to receive the Compact Flash size in KiloBytes.
FreeKB

A pointer to receive the Compact Flash free space in KiloBytes.

Return value:

The error code.

Remarks:

If no Compact Flash is inserted into the camera, both values will be 0.

3.15 ABCanonGetCustomFunction

Get a "Custom function" setting from the camera. This function replaces the

ABCanonGetCustomOption() function which is now deprecated.

Syntax:

int ABCAPI ABCanonGetCustomFunction(

ABCAMERA_HANDLE hCH,

int CustomFunctionNum

);

Parameters:

hCH

The camera handle
CustomFunctionNum

The custom function to get, one of:
ABC_CF_SETBUTTON_FUNCT

ABC_CF_LONGEXP_NOISE_RED

Programming guide and function reference Rev G, January 4th 2021

Page 30/54

ABC_CF_FLASH_SYNC

ABC_CF_SHUTTER_AE_LOCK_BTN

ABC_CF_AF_ASSIST_BEAM

ABC_CF_EXP_LEVEL_INCREMENT

ABC_CF_FLASH_FIRING

ABC_CF_ISO_EXPANSION

ABC_CF_AEB_SEQUENCE

ABC_CF_SUPERIMPOSED_DISPLAY

ABC_CF_MENU_BUTTON_DISPLAY

ABC_CF_MIRROR_LOCKUP

ABC_CF_AF_POINT_SELECTION

ABC_CF_E_TTL_II

ABC_CF_SHUTTER_CURTAIN

ABC_CF_SAFETY_SHIFT

ABC_CF_AF_POINT_ACTIVATION

ABC_CF_RETURN_TO_SHOOT

ABC_CF_LENS_AF_STOP_BUTTON

ABC_CF_ADD_ORIGINAL_DATA

Return value:

The error code, which will be ABC_RETVAL_INVALID_PARM if the requested custom function

is not defined for the camera.

Remarks:

This function replaces and enhance the ABCanonGetCustomOption() introduced in version

1.02.

For compatibility reasons, CustomFunctionNum can also be a 1 to 9 number corresponding to

the 350D custom functions numbers which will be translated to the corresponding custom function

if the camera is a 5D.

3.16 ABCanonGetCustomOption

This function has been deprecated and replaced by the ABCanonGetCustomFunction().

3.17 ABCanonGetEvent

Retrieve an event from the event queue

Programming guide and function reference Rev G, January 4th 2021

Page 31/54

Syntax:

int ABCAPI ABCanonGetEvent(

ABCAMERA_HANDLE hCH,

struct sABCEvent *pEvent,

uint32_t Timeout

);

Parameters:

hCH

The camera handle
pEvent

A pointer to receive the event
Timeout

The timeout (in ms) to wait for an event. Can also be 0 (do not wait) or -1 (wait

indefinitely)

Return value:

The error code. ABC_RETVAL_TIMEOUT means that the timeout lapsed and no event has been

returned.

Remarks:

The returned event should be released with ABCanonReleaseEvent().

3.18 ABCanonGetFWVersion

Gets the camera firmware version.

Syntax:

int ABCAPI ABCanonGetFWVersion(

ABCAMERA_HANDLE hCH,

uint8_t FWRelease[3]

);

Parameters:

hCH

The camera handle
FWRelease

A pointer to receive the 3 bytes firmware version

Return value:

The error code.

Programming guide and function reference Rev G, January 4th 2021

Page 32/54

Remarks:

The 3 version bytes are high, medium and low, in order. So camera with firmware version, for

example, 1.0.3, will have 1 in FWRelease[0], 0 in FWRelease[1] and 3 in FWRelease[2].

3.19 ABCanonGetImgSetting

Get an image setting from the camera.

Syntax:

int ABCAPI ABCanonGetImgSetting(

ABCAMERA_HANDLE hCH,

int ImgSetting

);

Parameters:

hCH

The camera handle
ImgSetting

The image setting to retrieve, one of:
ABC_IMGSETTING_MODE_DIAL

ABC_IMGSETTING_SHUTTER_SPEED

ABC_IMGSETTING_APERTURE

ABC_IMGSETTING_ISO

ABC_IMGSETTING_EXP_COMPENSATION

ABC_IMGSETTING_METERING

ABC_IMGSETTING_AUTOFOCUS

ABC_IMGSETTING_WHITE_BALANCE

ABC_IMGSETTING_PICTURE_QUALITY

ABC_IMGSETTING_FLASH_EXP_COMP

ABC_IMGSETTING_AUTO_POWER_OFF

ABC_IMGSETTING_DRIVE_MODE

ABC_IMGSETTING_AEB

ABC_IMGSETTING_COLOR_TEMPERATURE

Return value:

The requested setting or an error. Errors are values < 0, settings are >= 0

3.20 ABCanonGetImageCounter

Get the internal image counter, used to create the filename for automatic image saving.

Programming guide and function reference Rev G, January 4th 2021

Page 33/54

Syntax:

int ABCAPI ABCanonGetImageCounter(

ABCAMERA_HANDLE hCH,

uint32_t *pCounter

);

Parameters:

hCH

The camera handle
pCounter

A pointer to receive the current image counter.

Return value:

The error code.

Remarks:

The counter is automatically set to the correct value during the call to

ABCanonSetSaveFilenameA / ABCanonSetSaveFilenameW, based on the images

already present in the directory.

3.21 ABCanonGetImgSettingText

Get an image setting as readable text.

Syntax:

char * ABCAPI ABCanonGetImgSettingText(

ABCAMERA_HANDLE hCH,

int ImgSetting

);

Parameters:

hCH

The camera handle
ImgSetting

The image setting to retrieve, one of:
ABC_IMGSETTING_MODE_DIAL

ABC_IMGSETTING_SHUTTER_SPEED

ABC_IMGSETTING_APERTURE

ABC_IMGSETTING_ISO

ABC_IMGSETTING_EXP_COMPENSATION

ABC_IMGSETTING_METERING

ABC_IMGSETTING_AUTOFOCUS

Programming guide and function reference Rev G, January 4th 2021

Page 34/54

ABC_IMGSETTING_WHITE_BALANCE

ABC_IMGSETTING_PICTURE_QUALITY

ABC_IMGSETTING_FLASH_EXP_COMP

ABC_IMGSETTING_AUTO_POWER_OFF

ABC_IMGSETTING_DRIVE_MODE

ABC_IMGSETTING_AEB

ABC_IMGSETTING_COLOR_TEMPERATURE

Return value:

A pointer to a constant ASCII text with the readable version for the requested setting or NULL in

case of error.

Remarks:

This function is a helper function that can be used to ease debugging and it is not meant to be

directly used because all returned values are in English and will not be localized.

3.22 ABCanonGetList

Get a list of admitted values for an image setting

Syntax:

int ABCAPI ABCanonGetList(

ABCAMERA_HANDLE hCH,

int ImgSetting,

uint32_t pList[],

size_t ListSize

);

Parameters:

hCH

The camera handle
ImgSetting

The image setting to retrieve, one of:
ABC_IMGSETTING_MODE_DIAL

ABC_IMGSETTING_SHUTTER_SPEED

ABC_IMGSETTING_APERTURE

ABC_IMGSETTING_ISO

ABC_IMGSETTING_EXP_COMPENSATION

ABC_IMGSETTING_METERING

ABC_IMGSETTING_AUTOFOCUS

ABC_IMGSETTING_WHITE_BALANCE

ABC_IMGSETTING_PICTURE_QUALITY

ABC_IMGSETTING_FLASH_EXP_COMP

Programming guide and function reference Rev G, January 4th 2021

Page 35/54

ABC_IMGSETTING_AUTO_POWER_OFF

ABC_IMGSETTING_DRIVE_MODE

ABC_IMGSETTING_AEB

ABC_IMGSETTING_COLOR_TEMPERATURE

pList[]

Pointer to a user allocated array for the list item. Can be NULL when just requesting the

list size.
ListSize

The size (in items) of the memory pointed by pList[]. Ignored if pList[] is NULL.

Return value:

The number of items of the requested list or an error. ABC_RETVAL_BUFFER_TOO_SMALL is

returned if the provided list is too small.

Remarks:

Note that if you call first this function to query for the size of the list (using pList[] == NULL)

and then call it again with a buffer sized with the value returned by the previous call, you should

anyway check the returned value because the list size may have changed in between the two calls

(and so you can get fewer items if the list shrunk, or ABC_RETVAL_BUFFER_TOO_SMALL if the

list grew).

A simpler way to use this function is to allocate a big list (100 items, for example) and then use the

return value to limit the list.

3.23 ABCanonGetOptions

Get the current library options.

Syntax:

int ABCAPI ABCanonGetOptions(

ABCAMERA_HANDLE hCH,

uint32_t *pOptions

);

Parameters:

hCH

The camera handle
pOptions

A pointer to receive the current options.

Return value:

The error code.

Programming guide and function reference Rev G, January 4th 2021

Page 36/54

Remarks:

See Library options on page 10 for more information.

3.24 ABCanonGetOwnerName

Returns the camera owner name.

Syntax:

char * ABCAPI ABCanonGetOwnerName(

ABCAMERA_HANDLE hCH

);

Parameters:

hCH

The camera handle

Return value:

A pointer to an internal buffer containing the camera owner as an ASCIIz string, or NULL in case of

error (invalid handle).

3.25 ABCanonGetPictureTypes

Returns a list of picture types the camera can take.

Syntax:

int ABCAPI ABCanonGetPictureTypes(

ABCAMERA_HANDLE hCH,

struct sImageTypes **pSIT

);

hCH

The camera handle
pSIT

A pointer that receives a pointer to a struct sImageTypes array containing the

images types supported by the camera.

Return value:

The number of entries in the struct sImageTypes array, or an error.

Programming guide and function reference Rev G, January 4th 2021

Page 37/54

Remarks:

struct sImageTypes is:

{

 char Description[20];

 uint32_t Height;

 uint32_t Width;

 uint32_t Type;

};

 Description is an ASCIIz string containing the image type description;

 Height and Width are the dimensions in pixels;

 Type is one of ABC_PT_FINE, ABC_PT_NORMAL, ABC_PT_RAW.

The memory used for this array does not require to be freed.

3.26 ABCanonGetPQImageCount

Gets the number of images that will be downloaded for a given picture quality.

Syntax:

int ABCAPI ABCanonGetPQImageCount (

ABCAMERA_HANDLE hCH,

int32_t PictureQuality

);

Parameters:

hCH

The camera handle
PictureQuality

The picture quality or -1 for the picture quality currently in use.

Return value:

The number of images that will be downloaded (1 or 2) or an error.

Remarks:

An error will be returned if the PictureQuality parameter is not valid value for the current

camera configuration (for example, passing ABC_PICTUREQUALITY_RAW when the camera is in

basic mode).

3.27 ABCanonGetRemainingShots

Gets the number of images that can be saved to the compact flash.

Programming guide and function reference Rev G, January 4th 2021

Page 38/54

Syntax:

int ABCAPI ABCanonGetRemainingShots(

ABCAMERA_HANDLE hCH

);

Parameters:

hCH

The camera handle

Return value:

The number of images that can be saved to the compact flash or an error.

Remarks:

The camera limits the displayed number to 999, while the returned value may be higher.

3.28 ABCanonGetSerialNumber

Returns the camera serial number.

Syntax:

uint32_t ABCAPI ABCanonGetSerialNumber(

ABCAMERA_HANDLE hCH

);

Parameters:

hCH

The camera handle

Return value:

The camera serial number (as a 32 bit unsigned number) or 0 in case of error (invalid handle).

3.29 ABCanonGetVersion

Returns the library version and build number.

Programming guide and function reference Rev G, January 4th 2021

Page 39/54

Syntax:

void ABCAPI ABCanonGetVersion(

uint32_t *pVersionH,

uint32_t *pVersionL,

uint32_t *pBuild

);

Parameters:

pVersionH

A pointer to a uint32_t variable that receives the major version number

pVersionL

A pointer to a uint32_t variable that receives the minor version number

pBuild

A pointer to a uint32_t variable that receives the build number

3.30 ABCanonGetWritableSettings

Returns an array of boolean values indicating what image settings are writable in the current camera

mode.

Syntax:

int ABCAPI ABCanonGetWritableSettings(

ABCAMERA_HANDLE hCH,

int32_t *pSettingsArray,

int SettingsArraySize

);

Parameters:

hCH

The camera handle
pSettingsArray

A pointer to user allocated memory to receive the settings
SettingsArraySize

The pSettingsArray size in items (not bytes)

Return value:

The number of items actually used (which is SettingsArraySize at maximum) or an error

code.

Programming guide and function reference Rev G, January 4th 2021

Page 40/54

Remarks:

You can use ABC_IMGSETTING_... (see ABCanonGetImgSetting() above) as an index in

pSettingsArray. If SettingsArraySize is smaller than required only

SettingsArraySize items will be compiled. If a value in the array is 0, the corresponding

setting is read only.

3.31 ABCanonImgSettingValueToText

Convert an image setting value to the corresponding text.

Syntax:

char * ABCAPI ABCanonImgSettingValueToText(

int ImgSetting,

int Value

);

Parameters:

ImgSetting

The image setting to retrieve, one of:
ABC_IMGSETTING_MODE_DIAL

ABC_IMGSETTING_SHUTTER_SPEED

ABC_IMGSETTING_APERTURE

ABC_IMGSETTING_ISO

ABC_IMGSETTING_EXP_COMPENSATION

ABC_IMGSETTING_METERING

ABC_IMGSETTING_AUTOFOCUS

ABC_IMGSETTING_WHITE_BALANCE

ABC_IMGSETTING_PICTURE_QUALITY

ABC_IMGSETTING_FLASH_EXP_COMP

ABC_IMGSETTING_AUTO_POWER_OFF

ABC_IMGSETTING_DRIVE_MODE

ABC_IMGSETTING_AEB

ABC_IMGSETTING_COLOR_TEMPERATURE

Value

The value to be converted to text.

Return value:

A pointer to a constant ASCII text with the readable version for the requested setting or NULL in

case of error.

Programming guide and function reference Rev G, January 4th 2021

Page 41/54

Remarks:

This function is a helper function that can be used to ease debugging and it is not meant to be

directly used because all returned values are in English and will not be localized.

3.32 ABCanonIsShootingAllowed

Checks if shooting is allowed, or some camera setting prevents it.

Syntax:

int ABCAPI ABCanonIsShootingAllowed(

ABCAMERA_HANDLE hCH,

int *Reason

);

Parameters:

hCH

The camera handle
Reason

A pointer to receive whether the shoot is allowed or the reason it is not.

Return value:

The error code.

Remarks:

The returned reason can be:

 ABC_SHOOTINGDENIED_ALLOWED Shooting is actually allowed.

 ABC_SHOOTINGDENIED_MIRROR_LOCK Mirror lock is active.

 ABC_SHOOTINGDENIED_SELF_TIMER Self timer is active.

 ABC_SHOOTINGDENIED_BULB The shutter speed is set to BULB.

3.33 ABCanonRegisterNotificationCB

Register a call back function to receive notifications

Syntax:

int ABCAPI ABCanonRegisterNotificationCB(

ABCAMERA_HANDLE hCH,

ABC_NOTIFICATION_CB lNotificationFunction

);

Programming guide and function reference Rev G, January 4th 2021

Page 42/54

Parameters:

hCH

The camera handle
lNotificationFunction

The call back function

Return value:

The error code.

Remarks:

The call back function has the following prototype:
int _stdcall Function(

ABCAMERA_HANDLE Handle,

struct sABCEvent *pABCEvent

);

Refer to Notifications/events on page 11 for more information about events.

3.34 ABCanonRegisterRawNotificationCB

Register a call back function to receive raw Canon notifications.

Syntax:

int ABCAPI ABCanonRegisterRawNotificationCB(

ABCAMERA_HANDLE hCH,

ABC_RAW_NOTIFICATION_CB lNotificationFunction

);

Parameters:

hCH

The camera handle
lNotificationFunction

The call back function

Return value:

The error code.

Programming guide and function reference Rev G, January 4th 2021

Page 43/54

Remarks:

The call back function has the following prototype:
void _stdcall Function (

ABCAMERA_HANDLE Handle,

uint16_t CanonEventID,

uint16_t Severity,

uint8_t *pData,

int DataSize

);

3.35 ABCanonReleaseCameraList

Releases the memory allocated by the ABCanonBuildCameraList() function.

Syntax:

void ABCAPI ABCanonReleaseCameraList(

struct sCameraData *pCameraData

);

Parameters:

pCameraData

The pointer returned by the ABCanonBuildCameraList() function.

3.36 ABCanonReleaseEvent

Release an event returned by ABCanonGetEvent().

Syntax:

void ABCAPI ABCanonReleaseEvent(

struct sABCEvent *pEvent

);

Parameters:

pEvent

The event pointer returned by the ABCanonGetEvent() function.

3.37 ABCanonSetCameraClock

Sets the camera internal clock.

Programming guide and function reference Rev G, January 4th 2021

Page 44/54

Syntax:

int ABCAPI ABCanonSetCameraClock(

ABCAMERA_HANDLE hCH,

time_t Time

);

Parameters:

hCH

The camera handle
Time

The time to set the camera

Return value:

The error code.

Remarks:

The clock is in "unix" time (for example, 0x562823AC is Oct 21st 2015, 23:45:48)

3.38 ABCanonSetDownloadMode

Selects what to do with the downloaded images.

Syntax:

int ABCAPI ABCanonSetDownloadMode(

ABCAMERA_HANDLE hCH,

int DownloadMode

);

Parameters:

hCH

The camera handle
DownloadMode

The destination of the downloaded image:

 ABC_IMGDL_DISCARD Discard the image

 ABC_IMGDL_SAVE_TO_FILE Save to a file, with the filename

set with either ABCanonSetSaveFilenameA/W() or

ABCanonSetSaveOverrideA/W().

 ABC_IMGDL_SAVE_TO_MEMORY Put the image in a memory buffer

and pass it to the application.

 ABC_IMGDL_OVERRIDE_OR_DISCARD Save to file if there is a filename

set with ABCanonSetSaveOverrideA/W(), discard otherwise. Note that

Programming guide and function reference Rev G, January 4th 2021

Page 45/54

filename set with ABCanonSetSaveFilenameA/W() are ignored in the

download mode.

Return value:

The error code.

Remarks:

For this to work, ABCanonSetSaveTarget() should be set to PC o CF+PC.

3.39 ABCanonSetImageCounter

Set the internal image counter, used to create the filename for automatic image saving.

Syntax:

int ABCAPI ABCanonSetImageCounter(

ABCAMERA_HANDLE hCH,

uint32_t Counter

);

Parameters:

hCH

The camera handle
hCH

The value to set the image counter to.

Return value:

The error code.

Remarks:

The counter is automatically set to the first available value during the call to

ABCanonSetSaveFilenameA() or ABCanonSetSaveFilenameW(), based on the images

already present in the directory. So if you want to change the number, you should call this function

AFTER having set the directory and the base filename.

If you want to set the value just before the image is saved, do it in the

ABC_EVENT_SHOT_COMPLETED event.

3.40 ABCanonSetImgSetting

Changes an image setting

Programming guide and function reference Rev G, January 4th 2021

Page 46/54

Syntax:

int ABCAPI ABCanonSetImgSetting(

ABCAMERA_HANDLE hCH,

int ImgSetting,

int SetType,

int Value

);

Parameters:

hCH

The camera handle
ImgSetting

The image setting to set, one of:
ABC_IMGSETTING_MODE_DIAL

ABC_IMGSETTING_SHUTTER_SPEED

ABC_IMGSETTING_APERTURE

ABC_IMGSETTING_ISO

ABC_IMGSETTING_EXP_COMPENSATION

ABC_IMGSETTING_METERING

ABC_IMGSETTING_AUTOFOCUS

ABC_IMGSETTING_WHITE_BALANCE

ABC_IMGSETTING_PICTURE_QUALITY

ABC_IMGSETTING_FLASH_EXP_COMP

ABC_IMGSETTING_AUTO_POWER_OFF

ABC_IMGSETTING_DRIVE_MODE

ABC_IMGSETTING_AEB

ABC_IMGSETTING_COLOR_TEMPERATURE

SetType

How to change the setting:

ABC_SETTYPE_FIRST Change to lowest value

ABC_SETTYPE_CHANGE Relative change of Value (with sign)

ABC_SETTYPE_SET Set image setting to Value

ABC_SETTYPE_LAST Change to highest value

ABC_SETTYPE_PREV Switch to the previous value

ABC_SETTYPE_NEXT Switch to the next value
Value

The relative change for ABC_SETTYPE_CHANGE and the value to set for

ABC_SETTYPE_SET. Ignored for all others SetType values.

Return value:

The error code.

Programming guide and function reference Rev G, January 4th 2021

Page 47/54

3.41 ABCanonSetOptions

Sets the library options.

Syntax:

int ABCAPI ABCanonSetOptions(

ABCAMERA_HANDLE hCH,

uint32_t NewOptions

);

Parameters:

hCH

The camera handle
NewOptions

The new library options.

See Library options on page 10 for more information.

Return value:

The error code.

Remarks:

See Library options on page 10 for more informations.

3.42 ABCanonSetSaveFilenameA / ABCanonSetSaveFilenameW

Sets the path/filename to use when download mode has been set to

ABC_IMGDL_SAVE_TO_FILE.

Syntax:

int ABCAPI ABCanonSetSaveFilenameA(

ABCAMERA_HANDLE hCH,

char *FileName,

int DigitsCount

);

or
int ABCAPI ABCanonSetSaveFilenameW(

ABCAMERA_HANDLE hCH,

LPWSTR FileName,

int DigitsCount

);

Programming guide and function reference Rev G, January 4th 2021

Page 48/54

Parameters:

hCH

The camera handle
FileName

The filename to save to, either ANSI for ABCanonSetSaveFilenameA or

WIDECHAR for ABCanonSetSaveFilenameW.

DigitsCount

The number of digits to use.

Return value:

The error code.

Remarks:

The path/filename to save to is:

<pathname\basename><ImageCounter>.<Extension>.

The <Extension> part will be automatically set to the correct image type (JPG or CR2), while

FileName sets <pathname\basename> and DigitsCount sets the number of digits in

<ImageCounter>.

For example, setting FileName to "C:\Users\Angelo\Pictures\IMG_" and

DigitsCount to 4 will save images to:

 C:\Users\Angelo\Pictures\IMG_0001.JPG

 C:\Users\Angelo\Pictures\IMG_0002.JPG

 ...

When this function is called, it automatically searches the directory for images and will set the

starting value of ImageCounter to the last image found +1.

3.43 ABCanonSetSaveOverrideA / ABCanonSetSaveOverrideW

Sets the path/filename to use once when download mode has been set to

ABC_IMGDL_SAVE_TO_FILE.

Syntax:

int ABCAPI ABCanonSetSaveOverrideA(

ABCAMERA_HANDLE hCH,

char *FileName

);

or
int ABCAPI ABCanonSetSaveOverrideW(

ABCAMERA_HANDLE hCH,

LPWSTR FileName

);

Programming guide and function reference Rev G, January 4th 2021

Page 49/54

Parameters:

hCH

The camera handle
FileName

The filename to save to, either ANSI for ABCanonSetSaveOverrideA or

WIDECHAR for ABCanonSetSaveOverrideW.

Use NULL to clear a previously set override filename.

Return value:

The error code.

Remarks:

The filename set with this function will be used without any modification/expansion (except for

adding the correct extension) just once for the next image download and then discarded.

3.44 ABCanonSetSaveTarget

Sets where the camera saves the image.

Syntax:

int ABCAPI ABCanonSetSaveTarget(

ABCAMERA_HANDLE hCH,

int SaveTarget

);

Parameters:

hCH

The camera handle
SaveTarget

The destination of the image:

 ABC_SAVETGT_PC: The camera downloads the image to the PC via the

USB connection.

 ABC_SAVETGT_CF: The camera saves the image to the compact flash

 ABC_SAVETGT_BOTH: The camera both saves the image to the compact

flash and downloads it to the PC.

Return value:

The error code.

Programming guide and function reference Rev G, January 4th 2021

Page 50/54

Remarks:

If you want to download the images to the PC, you should call

ABCanonSetSaveTarget(...,ABC_SAVETGT_PC) after having connected the camera.

When the camera is disconnected, the library will automatically set the destination to

ABC_SAVETGT_CF.

3.45 ABCanonShoot

Takes an image.

Syntax:

int ABCAPI ABCanonShoot(

ABCAMERA_HANDLE hCH

);

Parameters:

hCH

The camera handle

Return value:

The error code, which is typically ABC_RETVAL_DENIED when shooting is not possible. Call

ABCanonIsShootingAllowed() to find the reason.

Programming guide and function reference Rev G, January 4th 2021

Page 51/54

4 Error reference

4.1 ABC_RETVAL_OK

No error.

4.2 ABC_RETVAL_ERROR

Generic error. Normally this error means that some USB command returned some unexpected (and

therefore unhandled) error.

4.3 ABC_RETVAL_BUSY

The camera returned a BUSY response, meaning that the camera menu is displayed on the screen.

No further operations can be done until the menu is exited (by the user). See page 18.

4.4 ABC_RETVAL_BUFFER_TOO_SMALL

The buffer passed to some function (like ABCanonGetAllSettings() or

ABCanonGetWritableSettings()) is too small.

4.5 ABC_RETVAL_INVALID_HANDLE

The camera handle passed to the function is not valid (it's NULL).

4.6 ABC_RETVAL_INVALID_PARM

A parameter passed to the function is not valid.

4.7 ABC_RETVAL_OUT_OF_MEMORY

A memory allocation within the library failed.

4.8 ABC_RETVAL_NOT_FOUND

The searched camera was not found.

4.9 ABC_RETVAL_SEM_ERROR

An error occurred while accessing the event queue synchronization semaphore.

Programming guide and function reference Rev G, January 4th 2021

Page 52/54

4.10 ABC_RETVAL_INVALID_PATH

The path passed to ABCanonSetSaveFilenameA / ABCanonSetSaveFilenameW() is

not valid.

4.11 ABC_RETVAL_TIMEOUT

No events occurred within the timeout period passed to ABCanonGetEvent()

4.12 ABC_RETVAL_DENIED

Shooting is not possible.

4.13 ABC_RETVAL_NOT_CONNECTED

The camera is no longer connected. Call ABCanonDisconnectFromCamera() to close the

camera handle and to release all the internal resources.

4.14 ABC_RETVAL_THREAD_BUSY

This return value is possible only with the option ABC_OPTIONS_HANDLE_THREAD_BUSY set.

It means that the function call has been aborted due to a possible deadlock. See Threading on page

20 for more information.

Programming guide and function reference Rev G, January 4th 2021

Page 53/54

5 Library revision history

5.1 v1.00

Initial release

5.2 v1.01

 Handled notification for changes in the custom options

 Added ABCanonGetCustomOption() function

5.3 v1.02

 Added ABC_OPTIONS_HANDLE_THREAD_BUSY option

 Fixed a crash if neither ABCanonSetSaveFilenameW() nor

ABCanonSetSaveFilenameA() were ever called

 Added ABC_EVENT_JPG_DISCARDED and ABC_EVENT_CR2_DISCARDED events

 Changed return values for the ABC_EVENT_JPG_READY and

ABC_EVENT_CR2_READY events. Now these events are more consistent with the return

values of all the other events. **WARNING** this change is **NOT** backward

compatible!!!

5.4 v2.00

 Added Canon 5D support

 Added ABCanonGetCustomFunction() to replace the now deprecated function

ABCanonGetCustomOption().

 Added ABCanonGetCameraType() function.

 Added ABC_OPTIONS_STANDARD_BULB option for the Canon 5D

5.5 v2.01

 WINUSB.DLL is no longer implicitly linked but it is explicitly loaded during ABCanon7

initialization. This allows a third party program to implicitly link ABCanon7.DLL and start

execution even if no WINUSB.DLL is installed in the system.

5.6 v2.02

 Fixed an issue that could cause excessive CPU usage.

 Added ABCanonGetPQImageCount()function.

Programming guide and function reference Rev G, January 4th 2021

Page 54/54

 Added ABC_IMGDL_OVERRIDE_OR_DISCARD download mode and

ABC_OPTIONS_ALLOW_OVERWRITE and ABC_OPTIONS_PERMANENT_OVERRIDE

options.

 Fixed a problem that prevented the library to work with Windows 10

5.7 v2.03

 Some notifications are done by a new helper thread to avoid deadlocks.

 Added an option to make the library poll the camera when a BUSY condition occurs,

instead of having to do this poll from the user code

 Added ABC_EVENT_BUSY event to notify the begin/end of camera busy condition

 Added ABC_EVENT_ALL_DONE event to notify the completion of all shoot related

operations.

